

Sixth Semester B.E. Degree Examination, Dec.2015/Jan.2016 Digital Communication

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. With a neat block diagram, briefly explain the various basic signal processing operations in a digital communication system.

 (06 Marks)
 - b. State and prove sampling theorem for low pass signals.

(08 Marks)

- The signal $g(t) = 10\cos(20\pi t)\cos(200\pi t)$ is sampled at the rate of 250 samples per second.
 - i) Determine the spectrum of the resulting sampled signal.
 - ii) Specify the cutoff frequency of the ideal reconstruction filter so as to recover g(t) from its sampled version.
 - iii) What is the Nyquist rate for g(t)?

(06 Marks)

- 2 a. Show that, signal to quantization noise ratio of a uniform quantizer is given by, SNR = 1.8 + 6n.
 - b. Write a note on TDM.

(05 Marks) (05 Marks)

c. Write a note on Robust quantization.

- (05 Marks)
- d. With a neat block diagram, explain the three basic functions of a Regenerative Repeater in a PCM system. (05 Marks)
- 3 a. With a neat block diagram, explain DPCM transmitter and receiver. (08 Marks)
 - b. Draw the polar RZ, polar NRZ, unipolar NRZ, Bipolar RZ and Manchester formats for the data 10110101. (05 Marks)
 - c. What are the types of quantization errors which occur in DM? Explain with a neat sketch and equations. (07 Marks)
- a. Explain the need for a precoder in a Duobinary system. With a transmitter and receiver block diagrams, illustrate the working for the data 11010110, assume initial bit = 0.

(08 Marks)

- b. Define intersymbol interference, explain Nyquist criteria for distortionless baseband transmission. (06 Marks)
- c. Write a note on adaptive equalization.

(06 Marks)

PART - B

- 5 a. With a neat block diagrams, explain DPSK trasmitter and receiver. (08 Marks)
 - b. Obtain the expression for probability of error for coherent detection of PSK. (08 Marks)
 - c. A binary data is transmitted using ASK over AWGN channel at a rate of 2.4 MbPS. The carrier amplitude at the receiver is 1 mV. Noise power spectral density is $\frac{N_0}{2} = 10^{-15}$ watts/Hz. Find the average probability of error if detector is coherent. Take erfc(5) $\approx 3 \times 10^{-6}$.

- a. Explain briefly Gram-Schmidt orthogonalization. 6 (10 Marks)
 - b. Explain geometric interpretation of signals.

(05 Marks)

c. Define conceptual model of a digital communication system.

(05 Marks)

- Show that the impulse response of a matched filter is a time reversed and delayed version of the input signal.
 - Consider a finite energy signal g(t) as shown in Fig. Q7 (b)

of the contract of the contrac Fig. Q7 (b)

- i) Sketch the impulse response of the matched filter.
- ii) Determine the output of the matched filter.

(06 Marks)

(06 Marks)

- c. Explain the detection of known signal in Noise.
- 8 a. Explain the properties of PN sequence.

(04 Marks)

- b. Explain with a neat block diagram, direct sequence spread coherent BPSK transmitter and receiver. (08 Marks)
- spect. c. Explain Fast frequency hopping spread spectrum

(08 Marks)